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Various 1,6-anhydro sugars are synthesized utilizing salient features of gold-catalyzed glycosidations. All
the reactions occurred under mild conditions in the presence of 7 mol % of AuBr3 enabling easy synthesis
of 1,6-anhydro sugars from corresponding 6-hydroxy propargyl/methyl monosaccharides, disaccharides,
and trisaccharides in good yields.
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1,6-Anhydro sugars are excellent synthons for the syntheses of
medicinally important molecules1 and materials.2 They are also
known to be precursors for the synthesis of proteoglycans, glycosyl
halides,3a N- or S-glycosides,3b–d and C-glycosides.3e,f Stereoregular
or hyperbranched glycopolymers are also reported from 1,6-anhy-
dro sugars by cationic ring-opening polymerization.4 Interesting
opportunities for the synthesis of complex molecules and novel
glycopolymers prompted the development of methods for the syn-
thesis of this set of sugar derivatives.5

1,6-Anhydro sugar derivatives are synthesized either by thermal
degradation or alternatively by chemical reactions.5 Thermal degra-
dation or pyrolysis exploited all the major conventional and non-
conventional reaction media as well as the convection sources to
get 1,6-anhydro sugars.5b–f The major limitation of a thermal degra-
dation process is that they are more suitable to 1,6-anhydro mono-
saccharides and really tough to limit pyrolysis for 1,6-anhydro
oligosaccharides.5a However, 1,6-anhydro sugar derivatives by
chemical reactions enjoy the control and selective synthesis which
are otherwise not easy.1b An usual sequence for the chemical syn-
thesis of 1,6-anhydro sugars involves a leaving group at the anomer-
ic position with the 6-hydroxyl group and the remaining hydroxyl
groups are protected. Till date, Shoda’s direct synthesis of 1,6-anhy-
dro saccharides from unprotected glycopyranosides by the use of
2-chloro-1,3-dimethylimidazolinium chloride is the best.5a In
summary, most of the reported methods use stoichiometric quanti-
ties of reagents, often long reaction times, and tedious isolation
procedures. Thus methods that enable the synthesis of 1,6-anhydro
sugar derivatives through catalytic means are needed.1b

The foregoing discussion encouraged us to ponder upon devel-
oping a catalytic route to the synthesis of 1,6-anhydro saccharides
taking the cue from recent observations in gold-catalyzed glycosi-
dations. In our laboratory, we have identified propargyl and methyl
glycosides as novel glycosyl donors taking advantage of both the
ll rights reserved.
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Lewis as well as the Brønsted acidity of Au(III) salts.6 Usually, a
glycosylation reaction involves a fully protected glycosyl donor
with a leaving group at the anomeric position and a glycosyl accep-
tor (aglycone) that frequently contains a single hydroxyl moiety
and the reaction happens in an intermolecular fashion.7

Thus we hypothesized that if the glycosylation is carried out
intramolecularly on a sugar substrate containing a 6-OH group
(other hydroxyl groups being protected) and a leaving group at
the C-1 position, the reaction shall proceed to yield 1,6-anhydro
sugars. This proposition was further fueled by a recent observation
that showed cleavage of the interglycosidic bond and formation of
1,6-anhydro mannoside (4) and disaccharide 3 from an armed
disaccharide (1) and aglycone 2 under gold-catalyzed glycosidation
conditions (Scheme 1).8

Accordingly, an acetonitrile solution of propargyl 2,3,4-tri-O-
benzyl mannopyranoside 5a was heated to 70 �C for 10 h to isolate
1,6-anhydro mannoside 4 in 71% yield after concentration in vacuo
followed by filter column chromatographic purification.9–11 In an-
other reaction, methyl mannopyranoside (5b) was also found to
give compound 4 in 62% yield when subjected to above delineated
reaction conditions (Scheme 2).10

Aforementioned results enticed us to evaluate the general
applicability of the current protocol for the synthesis of other
1,6-anhydro sugars of monosaccharides, disaccharides, and trisac-
charides. 1,6-Anhydro sugar formation was then checked with
gluco-(6a,6b) and galacto-(7a,7b) substrates as well to obtain the
corresponding 1,6-anhydro derivatives 8 and 9 in good yields
(Table 1).9 In addition, the suitability of 1,6-anhydro sugar forma-
tion has been studied with a panel of disaccharides and trisaccha-
rides. Interesting to note that AuBr3-catalyzed intramolecular
reaction occurred on disaccharides (10a, 10b, 11a, and 11b) and
trisaccharides (14a, 14b, 15a, and 15b) resulting in the formation
of the corresponding 1,6-anhydro sugar derivatives (12, 13, 16,
and 17) in good yields.9 It is pertinent to mention that the inherent
acidity in the Au(III)-catalyzed glycosidation showed the domino
effect in one-pot. Deprotection of 6-O-silyl ether happened first
to give the 6-OH compound that got subsequently converted to
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Table 1
Synthesis of 1,6-anhydro saccharides
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Scheme 1. Cleavage of interglycosidic bond and formation of 1,6-anhydro mannoside.
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Scheme 2. AuBr3 catalyzed synthesis of 1,6-anhydro mannoside from propargyl
and methyl mannopyranosides.
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1,6-anhydro sugar via the intramolecular trapping of the oxocarbe-
nium ion generated due to the extrusion of the anomeric alkyl
(propargyl/methyl) group by the action of AuBr3.

In conclusion, the synthesis of 1,6-anhydro sugars from the cor-
responding 6-hydroxy propargyl/methyl glycosides was realized in
the presence of a catalytic amount of AuBr3 at 70 �C in acetonitrile.
Interestingly, deprotection of 6-O-TBDPS ether was observed for
the first time in the presence of catalytic quantity of AuBr3 and
subsequent intramolecular glycosidation happened in domino
Time, Yield
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fashion to give 1,6-anhydro sugar derivatives of disaccharides and
trisaccharides.

Acknowledgments

S.H. thanks the financial support from CSIR (NWP0036-B) and
Director NCL for LC–MS facility. S.A.T. acknowledges the fellowship
from CSIR, New Delhi.

Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.tetlet.2010.09.004.

References and notes

1. (a) Hattori, K.; Yoshida, T. Macromolecules 2009, 42, 6044–6049; (b) Kulkarni, S.
S.; Lee, J.-C.; Hung, S.-C. Curr. Org. Chem. 2004, 8, 475–509; (c) Hung, S.-C.;
Wang, C.-C.; Chang, S.-W.; Chen, C.-S. Tetrahedron Lett. 2001, 42, 1321–1324;
(d) Hung, S.-C.; Puranik, R.; Chi, F.-C. Tetrahedron Lett. 2000, 41, 77–80; (e)
Takeuchi, M.; Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. 2000, 41, 2609–
2611; (f) Witczak, Z. J. Pure Appl. Chem. 1994, 66, 2189–2192; (g) Georges, M.;
MacKay, D.; Fraser-Reid, B. J. Am. Chem. Soc. 1982, 104, 1101–1103; (h)
Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S. Tetrahedron Lett. 1981, 22,
4315–4322; (i) Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S. Tetrahedron
Lett. 1981, 22, 4319–4322; (j) Kelly, A. G.; Roberts, J. S. J. Chem. Soc., Chem.
Commun. 1980, 228–230; (k) Ogawa, T.; Kawano, T.; Matsui, M. Carbohydr. Res.
1977, 57, C31–C35.

2. (a) Ruckel, E. R.; Schuerch, C. J. Am. Chem. Soc. 1966, 88, 2605–2606; (b) Satoh,
T.; Imai, T.; Ishihara, H.; Maeda, T.; Kitajyo, Y.; Sakai, Y.; Kaga, H.; Kaneko, N.;
Ishii, F.; Kakuchi, T. Macromolecules 2005, 38, 4202–4210; (c) Ohara, M.;
Takagaki, A.; Nishimura, S.; Kohki, E. Appl. Catal., A Gen. 2010, 383, 149–155.

3. (a) Shimawaki, K.; Fujisawa, Y.; Sato, F.; Fujitani, N.; Kurogochi, M.; Hoshi, H.;
Hinou, H.; Nishimura, S. Angew. Chem., Int. Ed. 2007, 46, 3074–3079; (b)
Nambia, S.; Daeuble, J. F.; Doyle, R. J.; Taylor, K. G. Tetrahedron Lett. 1989, 30,
2179–2182; (c) Arndt, S.; Hsieh-Wilson, L. C. Org. Lett. 2003, 4179–4182; (d)
Tanaka, T.; Matsumoto, T.; Noguchi, M.; Kobayashi, A.; Shoda, S.-I. Chem. Lett.
2009, 38, 458–459; (e) McDevitt, J. P.; Lansbury, P. T., Jr. J. Am. Chem. Soc. 1996,
118, 3818–3828; (f) Stichler-Bonaparte, J.; Vasella, A. Helv. Chem. Acta 2001, 84,
2355–2367.

4. (a) Satoh, T.; Imai, T.; Kitajyo, Y.; Kakuchi, T. Curr. Top. Polym. Res. 2005, 195–
231; (b) Varma, A. J.; Kennedy, J. F.; Galgali, P. Carbohydr. Polym. 2004, 56, 429–
445; (c) Mori, M.; Kusuno, A.; Satoh, T.; Kaga, H.; Miura, M.; Tsuda, K.; Kakuchi,
T. Polym. Preprints 2002, 43, 547–548.

5. (a) Tanaka, T.; Huang, W. C.; Noguchi, M.; Kobyashi, A.; Shoda, S.-I. Tetrahedron
Lett. 2009, 50, 2154–2157; (b) Miura, M.; Kaga, H.; Sakurai, A.; Kakuchi, T.;
Takahashi, K. J. Anal. Appl. Pyrolysis 2004, 71, 187–199; (c) Kawamoto, H.;
Hatanaka, W.; Saka, S. J. Anal. Appl. Pyrolysis 2003, 70, 303–313; (d) Miura, M.;
Kaga, H.; Yoshida, T.; Ando, K. J. Wood Sci. 2001, 47, 502–506; (e) Huang, Y. F.;
Kuan, W. H.; Lo, S. L.; Lin, C. F. Bioresour. Technol. 2010, 101, 1968–1973; (f)
Kwon, G.-J.; Kuga, S.; Hori, K.; Ytagai, M.; Ando, K.; Hattori, N. J. Wood Sci. 2006,
52, 461–465; (g) Byramova, N. E.; Tuzikov, A. B.; Tyrtysh, T. V.; Bovin, N. V. Russ.
J. Bioorg. Chem. 2007, 33, 99–109; (h) Award, L.; Demange, R.; Zhu, Y.-H.; Vogel,
P. Carbohydr. Res. 2006, 341, 1235–1252; (i) Hung, S.-C.; Thopate, S. R.; Chi, F.-
C.; Chang, S.-W.; Lee, J.-C.; Wang, C.-C.; Wen, Y.-S. J. Am. Chem. Soc. 2001, 123,
3153–3154; (j) Boissiere-Junot, N.; Tellier, C.; Rabiller, C. J. Carbohydr. Chem.
1998, 17, 99–115; (k) Lafont, D.; Boullanger, P.; Banoub, J.; Descotes, G. Can. J.
Chem. 1990, 68, 828–835; (l) Sakairi, N.; Hayashida, M.; Kuzuhara, H.
Carbohydr. Res. 1989, 185, 91–104; (m) Rao, M. V.; Nagarajan, M. Carbohydr.
Res. 1987, 162, 141–144; (n) Fujimaki, I.; Ichikawa, Y.; Kuzuhara, H. Carbohydr.
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D (CHCl3, c 1.3)
+47.4; 1H NMR (400.13 MHz, CDCl3): d 3.05(s, 1H), 3.33(m, 1H), 3.38(s, 1H),
3.49(t, 1H, J = 6.3 Hz), 3.65–3.98(m, 5H), 4.14(t, 1H, J = 9.7 Hz), 4.15(d, 1H,
J = 8.1 Hz), 4.44(ABq, 2H, J = 12.2 Hz), 4.38–4.64(m, 5H), 4.71(m, 1H), 4.86(d,
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3.72(dd, 1H, J = 6.7, 11.3 Hz), 3.76–3.94(m, 2H), 4.18–4.63(m, 9H), 4.89(ABq,
2H, J = 7.7 Hz), 5.34(d, 1H, J = 1.1 Hz), 5.35(dd, 1H, J = 3.5, 10.6 Hz), 5.49(dd, 1H,
J = 8.1, 10.2 Hz), 5.69–5.77(m, 3H), 7.05–8.08(m, 45H); 13C NMR (125.76 MHz,
CDCl3): d 61.1, 62.2, 65.3, 67.5, 69.9, 71.0, 71.4, 71.8, 71.8, 71.9, 73.0, 73.1, 74.3,
75.0, 75.8, 76.0, 78.7, 100.4, 100.5, 101.0, 127.4–130.0, 133.1, 133.2, 133.3,
133.4, 133.4, 133.4, 133.5, 137.6, 139.9, 164.7, 165.0, 165.2, 165.4, 165.4, 165.6,
165.8; HRMS(MALDI-TOF) Calcd for C81H70O22Na, 1417.4256; Found,
1417.4251.
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